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Abstract—As the advancement of sensing and networking
technologies, participatory sensing has raised more and more
attention as it provides a promising way enabling public and pro-
fessional users to gather and analyze private data to understand
the world. However, in these participatory sensing applications
both data at the individuals and analysis results obtained at
the users are usually private and sensitive to be disclosed, e.g.,
locations, salaries, utility usage, consumptions, behaviors, etc. A
natural question, also an important but challenging problem is
how to keep both participants and users data privacy while still
producing the best analysis to explain a phenomenon.
In this paper, we have addressed this issue and proposed

M-PERM, a mutual privacy preserving regression modeling
approach. Particularly, we launch a series of data transformation
and aggregation operations at the participatory nodes, the clus-
ters, and the user. During regression model fitting, we provide
a new way for model fitting without any need of the original
private data or the exact knowledge of the model expression. To
evaluate our approach, we conduct both theoretical analysis and
simulation study. The evaluation results show that the proposed
approach produces exactly the same best model as if the original
private data were used without leakage of the fitted model to
any participatory nodes, which is a significant advance compared
with the existing approaches [1-5]. It is also shown that the data
gathering design is able to reach maximum privacy protection
under certain conditions and be robust against collusion attack.
Furthermore, compared with existing works under the same
context (e.g., [1-5]), to our best knowledge it is the first work
showing that not only the model coefficients estimation but also
a series of regression analysis and model selection methods are
reachable in mutual privacy preserving data analysis scenarios
such as participatory sensing.

I. INTRODUCTION

As the increasing popularity of mobile devices and sensing

technologies, participatory sensing [6], [7] has been viewed

as a promising way that first time enables the possibility

in the collection of not only traditional sensing data (e.g.,

temperature, humidity, acoustic signals, etc.) but also indi-

vidual exposure and activities [8-14]. However, this new data

gathering way may also bring in privacy concerns into the

networks. For example, in some existing participatory sensing

applications [9-11], [15-22] each participant’s data may be

private and sensitive to be disclosed to others, e.g., location

presence, behavior, attitude, or even income. Therefore, a

natural question, also an important and challenging problem

is how to protect every participant’s data privacy without

affecting the usage of data to explain a phenomenon to users.

However, many existing privacy preserving approaches,

e.g., [23-25], heavily rely on a trusted infrastructure (usu-

ally the sink/base station) and crypto approaches. However,

in participatory sensing networks the data are usually col-

lected/analyzed by users instead of a trusted sink/base station,

which may possibly disclose the data privacy of each partici-

pant at the user.

Furthermore, existing privacy preserving data aggregation

approaches can only provide limited information about the

data, e.g., summation, average, maximum, minimum, etc.,

which is far from satisfying users’ needs and further greatly

limits users’ ability to conduct complex data analysis in

privacy preserving participatory sensing applications. For ex-

ample, current privacy preserving regression modeling ap-

proaches for participatory sensing either provide only model

coefficients estimation by assuming the preknown knowledge

of model expression and thus lack the ability to find the

best model to fit the data [1-3], or have to leak the model

coefficients to every participant during model fitting [4], [5].

Therefore, it is imperative to provide an effective solution to

conduct complex data analysis and model fitting with mutual

privacy protected in participatory sensing applications.

To address the privacy issue and to facilitate multi-variate

data aggregation and analysis, we propose a series of privacy

preserving data gathering and model fitting designs for mutual

privacy preserving participatory sensing. The objective is to

learn from the multi-variate data collected from participants,

conduct data analysis, generalize to a model relating these

variables, fit the data and predict the future, at the same

time protect both participants and users’ privacy. The main

contributions of this paper are outlined as follows:
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• We propose a systematic mutual privacy preserving de-

sign to facilitate multi-variate data aggregation and anal-

ysis for privacy sensitive participatory sensing.

• The proposed mutual privacy preserving data aggregation

protocol are proved to be able to achieve maximum

privacy protection under certain conditions.

• Theoretical analysis shows that our approach is robust

against collusion attack.

• The proposed regression model fitting approach produces

exactly the same best model as if the original private

data were used without requiring the knowledge of exact

model expression or leaking the fitted model information

to participants, which is a significant advance compared

with the existing approaches [1-3].

• To our best knowledge, it is the first work showing that

not only model coefficients estimation but also regression

analysis and model fitting are doable for mutual privacy

preserving participatory sensing.

• The evaluation results show that our approach is efficient

in both computation and communication.

The rest of the paper is organized as follows: Section II

presents the related works. The background knowledge, mod-

els and assumptions are introduced in Section III. Section IV

is devoted to the development of our privacy preserving

regression model fitting design. Section V provides our se-

curity analysis and discusses the enhanced security design

with randomization. Section VI reports our evaluation results,

followed by the conclusions in Section VII.

II. RELATED WORK

In this section, we summarize the most relevant existing

research.

[26] presents the first algorithm for provably secure hi-

erarchical in-network data aggregation. [27] provides a state-

of-the-art survey of privacy-preserving techniques for WSNs.

[23] first introduces the privacy-preserving data aggregation in

wireless sensor networks, and presents two privacy-preserving

data aggregation schemes for additive aggregation functions.

[24] proposes a family of secret perturbation-based schemes

that can protect sensor data confidentiality without disrupt-

ing additive data aggregation. [25] presents the design and

evaluation of PriSense, a new solution to privacy preserving

data aggregation in people centric urban sensing systems based

on the concept of data slicing and mixing. Multidimensional

privacy-preserving data aggregation is proposed in [28]. Groat

et al. [29] presents KIPDA, a privacy-preserving aggregation

method for maximum and minimum aggregation functions.

Verifiable privacy-preserving range query in two-tiered sen-

sor networks is proposed in [30], which uses bucketing scheme

to mix the data and employ encoding numbers to prevent

the storage nodes from dropping data. [31] proposes SDAP,

a Secure Hop-by-hop Data Aggregation Protocol for sensor

networks, which is based on the principles of divide-and-

conquer and commit-and-attest. [32] proposes a framework

for a series of secure information aggregation in large sensor

networks, e.g., the computation of the median and the average

of the measurements, the estimation of the network size, and

the minimum and maximum sensor reading. [33] presents

iPDA, an integrity-protecting private data aggregation scheme.

In iPDA, data privacy is achieved through data slicing and

assembling technique and data integrity is achieved through

redundancy by constructing disjoint aggregation paths/trees.

[34] proposes a scheme that can detect ill-performed aggre-

gation without knowing the actual content of sensory data,

and therefore allow sensory data to be kept concealed. [35]

proposes a private data aggregation protocol that protects

individual sensed values during the data aggregation process

and is robust to data-loss. [36] develops a navigation ser-

vice, called GreenGPS, that allows drivers to find the most

fuelefficient routes for their vehicles between arbitrary end-

points. [37] specially focuses on spatial and temporal privacy

of users in participatory sensing applications. [38] studies three

representative scenarios-personal sensing, designated sensing,

and community sensing with respect to their privacy and

security implications.

The most related work are proposed in [1-3], where [1]

presents an algorithm that enables users, who want to conduct

a linear regression analysis with complete records without

disclosing values of their own attributes, to compute the exact

regression coefficients under the complete regression model;

[2] studies multivariate statistical analysis methods under

secure 2-party Computation (S2C) framework, including re-

gression coefficients estimation under the complete regression

model; and [3] addresses data privacy issues in participatory

sensing and provides regression coefficients estimation of the

complete regression model based on least square estimation.

It is worth pointing out that the correctness of the most

related approaches in [1-3] relies on the assumption that the

complete model (the global regression expression that includes

all the variables in a data set) is the best regression model.

Unfortunately, this assumption usually does not necessarily

hold in reality. It is very likely that only a portion of the

variables in the data set are related to the dependent variable;

or some variables are highly correlated and can be represented

by each other. In other words, the complete model is biased.

The most related works are proposed by Alan F. Karr, e.g.,

[4], [5]. Specifically, a series approaches for secure regression

modeling and statistical analysis are proposed. However, the

model coefficients have to be disclosed to every participant

during model fitting for least square estimation and regression

analysis.

Our approach differs from [1-5] in that 1. it has the power to

find the best regression model without requiring the knowledge

of exact model expression or leaking the fitted model to

participatory nodes; 2. it is the first work showing that not

only model coefficients estimation but also complex regression

analysis (including model fitting) is doable for mutual privacy

preserving participatory sensing; 3. it has the ability to achieve

maximum privacy protection under certain conditions.
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III. PRELIMINARIES, MODELS AND ASSUMPTIONS

A. Background Knowledge

Regression model fitting is widely used in many types of

data analysis and decision making process, e.g., air/water qual-

ity prediction, pollution monitoring, user-behavior prediction,

etc.

In this section, we start from bi-variate curve fitting in order

to ease readers’ reading, then discuss multi-variate curve fitting

and regression model fitting.

1) Least Squared Estimate (LSE) for Coefficient Estimation
in Deterministic Models: Given a model

b = C0 + C1 · f1(x1) + C2 · f2(x2) + · · ·+ Cw · fw(xw) (1)

and p samples {(xi,1, xi,2, · · · , xi,w, bi), i = 1, 2, · · · , p}, and

the function set {f0,f1,f2, · · · ,fw}, where f0(·) = 1, the

objective of model coefficient estimation is to find the optimal

(w+1)-dimensional vector C = (C0, C1, · · · , Cw)T to best fit

the data with the minimum estimation error Δ.

Based on Least Squared Estimate (LSE), we can formulate

the fitting problem as

argmin
C
Δ (2)

where

Δ = ‖δ‖2 =
p∑
i=1

δ2i =

p∑
i=1

(
bi −

w∑
j=0

Ĉjfj(xi,j)
)2

and Ĉj is the estimated coefficient of variable xj .
Specifically, Δ is called unexplained variation. We also

define the total variation Δ′ as

Δ′ =
p∑
i=1

(bi − b̄)2 =

p∑
i=1

b2i − pb̄2

Let
∂Δ

∂Ck = 0 (3)

By solving Eq.3, we have

GC = d (4)

where

G = [gij ](w+1)×(w+1) (5)

gij =

p∑
k=1

fj(xk,j)fi(xk,i) (6)

and

d = (d1, d2, · · · , dw+1)
T (7)

di =

p∑
k=1

bkfi(xk,i) (8)

where i, j ∈ {0, 1, · · · , w}.

Based on Eq.5-Eq.8, the model coefficients can be estimated

via LSE.

2) Regression Model Fitting: In regression model fitting, if

the user has known the exact variables of the model, as shown

in Eq.9, it is easy to apply the least square method to find the

best estimate of coefficients C = (C0, C1, · · · , Cw)T to fit the

data.
However, it is very likely that

• there are only a portion of the variables in

{x1, x2, · · · , xw} are related to the dependent variable

b;
• some variables {xi, · · · , xj , · · · , xk} may be highly cor-

related.

In other words, given a data set with w variables, there may

exist some models with less variables that can better explain

the data and provide more accurate fitting than the complete

model in Eq.9. Namely the complete model may overfit and

lead to a biased result. Note that it is often the case in reality

that there is limited knowledge about the exact variables of

the model in a given data set. From this point of view, Least

Squared Estimator is far from enough for regression modeling.

In order to find the best model, we introduce regression model

fitting via regression analysis. In the following, we introduce

some basic definitions of regression analysis.
Without loss of generality, we denote the complete model

bcompl = C0+C1 ·f1(x1)+C2 ·f2(x2)+· · ·+Cw ·fw(xw) (9)

where {x1, x2, · · · , xw} represents w variables, and the re-

duced model

breduced = C0+C1·f1(x1)+C2·f2(x2)+· · ·+Cq ·fq(xq) (10)

Based on Eq.5 and Eq.6, we define

L = [lij ](w)×(w) (11)

lij = gij − g0,i · g0,j
p

(12)

where i, j ∈ {1, · · · , w},
According to [39], L is usually an invertible matrix. Let

L−1 = H = [hij ](w)×(w) (13)

B. Network Model
We consider a participatory sensing network consisting of

a user and m clusters1. To facilitate our analysis, we assume

each cluster contains c participatory sensing nodes, one of

which could serve as a data aggregation point. Let P (i)

denote the data aggregation point of the i-th cluster, and

{V (i1), V (i2), · · · , V (ic)} the participatory sensing nodes in

this cluster. Each node V (ij) is preinstalled a random seed

before deployment.
We assume that 1. any pair of nodes within the same cluster

share a unique pairwise key; 2. the user node also shares a

unique pairwise key with each aggregation point. We assume

that the messages are securely transmitted within the network,

which can be achieved via conventional symmetric encryption

and key distribution schemes.

1Note that our scheme can adapt to general cluster formation schemes. Due
to page limits, we refer the readers to [40], [41] for cluster formation.
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C. Security Model

In this paper, we assume that participatory sensing nodes

follow a semi-honest model [42]. Specifically speaking, they

are honest and follow the protocol properly except that they

may record intermediate results and try to deduce the private

information of other nodes. We also assume there are limited

number of nodes in collusion.

We adopt a powerful attack model: the attack can compro-

mise any node, data aggregation point or even the sink node.

The purpose of attacker is to obtain other nodes’ private data

based on the information from compromised nodes. However,

we assume there are limited number of compromised nodes

in the network.

We further define the following privacy design goals:

Node-wise Privacy The data of each sensing node should

be privately kept to itself. The other nodes including the user

or data aggregation points, cannot learn enough information

to find out the private tuples while performing the aggregation

over the sensing networks.

User-wise Privacy The aggregation results and the fitted

regression model should not be disclosed to any one except

the user himself. None of data aggregation points or individual

nodes should know the analysis result.

IV. PRIVACY PRESERVING REGRESSION MODEL FITTING

In this section, we first introduce the data aggregation

scheme, then propose our regression model fitting design based

on the aggregated results via statistic tests.

A. Data Aggregation for Regression Model Fitting

Our data aggregation procedure can be summarized in three

steps: data aggregation at each node; data aggregation at each

cluster; overall data aggregation at the user.

1) Data Aggregation at Each Node: Before aggregation,

each node V (ij) first collects u tuples of its readings before

aggregation,

{(x(ij)k,1 , x
(ij)
k,2 , · · · , x(ij)k,w, b

(ij)
k )

∣∣ k = 1, 2, · · · , u}
, then locally computes its private data Θ(ij) based on Eq.6

and Eq.8, where

Θ(ij) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g0
...

gn
d

u∑
k=1

b2k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

and gi is the ith column ofG. The size ofΘ(ij) is w2+3w+3.

2) Data Aggregation at Each Cluster: During aggre-

gation, the data aggregation point P (i) generates c dif-

ferent positive numbers ρ1, ρ2, · · · , ρc, and distributes to

V (ij). Then node V (ij) generates a random vector r(ij) =
(r1, r2, · · · , rc−w2−3w−3)

T , and computes

s
(ij)
(k) =

[
1 ρk · · · ρck

] [ Θ(ij)

r(ij)

]
(15)

V (ij) keeps s
(ij)
(j) to itself and sends s

(ij)
(k) to V (ik), where

(k �= j). Then node V (ij) computes the summation (Note

S(ij)) of the data it receives from other nodes within the

cluster,

S(ik) =
c∑

j=1

s
(ij)
(k) (16)

After receiving S(i1), S(i2), · · · , S(ic), the data aggregation

point P (i) can build c linear equations displayed as follows.⎡
⎢⎢⎢⎣
1 ρ1 · · · ρc1
1 ρ2 · · · ρc2
...

...
. . .

...

1 ρc · · · ρcc

⎤
⎥⎥⎥⎦Φ(i) =

⎡
⎢⎢⎢⎣

S(i1)

S(i2)

...

S(ic)

⎤
⎥⎥⎥⎦ (17)

According to equations (15) and (16), we have

S(ik) =
[
1 ρk · · · ρck

]
⎡
⎢⎢⎣

c∑
j=1

Θ(ij)

c∑
j=1

r(ij)

⎤
⎥⎥⎦ (18)

By solving Eq.17 and Eq.18, the aggregation point P (i) can

have the aggregated summation of Θ(ij) of cluster i.

Φ(i) =

⎡
⎢⎢⎣

c∑
j=1

Θ(ij)

c∑
j=1

r(ij)

⎤
⎥⎥⎦ (19)

where j represents node V (ij) in cluster i, j ∈ {1, 2, · · · , c}.

According to Eq.19, only the upper part of Φ(i) is useful. We

have

Θ(i) =

c∑
j=1

Θ(ij) (20)

���

���

Fig. 1. Data aggregation at each cluster
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Fig. 2. Data aggregation at the user

3) Overall Data Aggregation at the User: Through a rout-

ing tree shown in figure 2, every data aggregation point sends

its summationsΘ(i) to the user. So at the sink node, according

to (20), the user can obtain a vector of all summations

Θ =

m∑
i=1

Θ(i) =

m∑
i=1

c∑
j=1

Θ(ij) (21)

B. Multi-variate Regression Model Fitting

In this section, we conduct regression model fitting based

on partial F -test and a variation of t-test [43]. We first test

the complete regression model based on partial F -test

1) Is Regression Analysis Doable without Leaking the Fitted
Model to Participatory Nodes?: In order to fit a good regres-

sion model and analyze its goodness, existing approaches [4],

[5] require the fitted model be available to every participatory

node. Otherwise regression analysis, e.g., LSE based analysis,

etc., are not doable. However, this causes the leakage of the

fitted model and thus breaks user-wise privacy.

Therefore a question comes for mutual privacy preserving

regression modeling: is regression analysis doable without
leaking the fitted model information to participatory nodes? By

investigating all kinds of regression analysis methods, we find

that most regression analysis methods heavily rely on the com-

putation of the unexplained variation Δ =
∑p

i=1

(
bi − b̂i

)2
.

Therefore the computability of Δ, or more specifically b̂i is

the key for mutual privacy preserving regression modeling.

However, without leaking the model information Δ seems

not computable in [1-5] since the estimated response variable b̂
is not computable at the user. However, according to Lemma 1,

we prove thatΔ could be computable without the need of com-

puting b̂, which can further lead to other regression analysis

methods available for mutual privacy preserving participatory

sensing.

Lemma 1: Δ is computable without the assistance of com-

puting b̂ at each individual participatory node.

Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [44].

Corollary 1: Regression analysis is generally doable with-

out the need of leaking the fitted model information to any

participatory node.

2) Feasibility Test of Regression Modeling: Note that not

all data sets could be fitted by a regression model, it is

important to conduct a feasibility test in order to know

whether it is proper to conduct regression modeling for a data

set. However, none of existing privacy preserving regression

modeling approaches [1-3] is able to launch such test.

In our approach, we launch the feasibility test of regression

modeling for a data set based on F -test. According to [43],

whether the variables of a given data set could fit to a

regression model or not can be determined by F -test,

H0 : C1 = C2 = · · · = Cw = 0, 1 < q < w (22)

which claims that none of the independent variables

xq+1, xq+2, · · · , xw affect b, versus the alternative hypothesis

H1 : At least one of Cq+1, Cq+2, · · · , Cw doesn’t equal to zero

which claims that at least one of the variables x1, x2, · · · , xw
affects b in a regression model.

Intuitively, a large value of F -test indicates that there is at

least one of the variables {x1, x2, · · · , xw} that makes the sum

of squared error of the complete model Δcompl substantially

reduced. Otherwise, none of the independent variables are

significantly correlated to the dependent variable.

If there is at least one of x1, x2, · · · , xw significantly affects

b, we need to further identify which of x1, x2, · · · , xw is

related to b.
3) Significance of Individual Variables: In reality it is

very likely that only a portion of the variables in a data set

are related to the response variable; or some variables are

highly correlated and can be represented by others. However,

existing privacy preserving regression modeling approaches

[1-3] simply include all the variables of the data set in their

models. In other words, the fitted regression models may

probably lead to biased fitting to the data.

In our approach, we compute the significance of each

independent variables with t-test, based on which we can

further determine which variable could better be included in

the model.

t =
Ĉj√

hjj · Δ
p−w−1

(23)

where hjj is given by Eq.13, and Δ is the unexplained

variation of the complete model.

By applying the t-statistic given above, we have

H0 : Cj = 0 and H1 : Cj �= 0
Specifically, we reject H0 in favor of H1 at the probability

of a Type I error equal to α if and only if either of the

following conditions hold.
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4) Regression Model Fitting: In this section, we show the

procedure to find the best model via testing all reasonable re-

gression models and compare them on the basis of well known

criterions in regression analysis, C statistic and Adjusted R.

Without loss of generality, suppose that Eq.10 is a model

to be tested, we have

R̄2 = (R2 − q − 1
p− 1)(

p− 1
p− q

) (24)

where

R2 = 1− Unexplained variation

Total variation

Based on Eq.9 and Eq.10, we define the unexplained vari-

ation of the complete model and the model to be tested as

Δcompl and Δreduced respectively; and the total variation of

the complete model and the model to be tested as Δ′
compl and

Δ′
reduced, respectively.

We have

C =
Δreduced

Δcompl/(p− (w + 1)) − (p− 2q − 2) (25)

Based on [39], the goodness of a fitted model could be

evaluated by C statistic and Adjusted R, and the best regression

model should follow with the least C statistic and the peak

high Adjusted R2. With this observation, the regression model

fitting algorithm is given as follows.

Algorithm 1 Mutual Privacy Preserving Regression Model

Fitting

Input: the data set, the function set {f0,f1,f2, · · · ,fw}, and the
aggregation result Θ
Output: the fitted model.

1: function Model=M-PERM(data set, function set, Θ)
2: i = 1
3: loopuntil i = w + 1
4: Test the models of i variables
5: Record the model with the smallest C statistic and the

peak high Adjusted R value. � Find the best
models consist of i variables.

6: i = i+ 1
7: end loop
8: Find the model with the smallest C statistic and the peak

high Adjusted R value among all the recorded models.
� Find the best model.

9: Return the model found
10: end function

V. SECURITY ANALYSIS

In this section, we analyze the privacy and confidentiality

issues of our proposed scheme and show that under certain

conditions our scheme is capable of achieving maximum

privacy protection in the network.

Lemma 2: Node V (ij) cannot deduce the private data of

other participatory nodes.

2There could be multiple models with similar peak high Adjusted R

Proof: According to the computation process at node V (ij),

only during the protocol execution

receive⇒ s(i1)(j), s(i2)(j), . . .
compute⇒ S(ij)

there exists probability that node V (ij) can receive the message

from the node V (ik). However, f (ik)(j) is a cumulated sum of

c float number. According to Eq.15, it is impossible to resplit

f (ik)(j) into c float number and deduce Θik. Therefore, node

V (ij) cannot deduce the private data of other nodes.

Corollary 2: The aggregation point can not deduce the

private data of any particular node.

Lemma 3: Node-wise Maximum Privacy Protection
Given node V (ij), and u > w+4, where u denotes the number

of sample tuples aggregated at individual node, w denotes

the number of variables in the data set. If the samples and

the variables at node V (ij) are independent of each other, the

privacy-preserving regression model fitting scheme proposed

in section IV could achieve node-wise maximum privacy

protection.

Proof: According to Eq.14, Eq.15, Eq.16, and the slicing

scheme proposed in Section IV-A2, each node generates (c−
w2−3w−3) random numbers and the vectorΘ(ij) is obtained

from w · u unknown values. Then, the equation (15) contains

(c+w·u−w2−3w−3) unknown values. If u > w+4, we have

(c+w ·u−w2−3w−3) > (w ·u) > (w2+4w) ≥ (w+1)2+1.
Namely even if all the other (c-2) nodes are in collusion in the

cluster, the unknown values of a node cannot be revealed to

the attacker, because the number of unknown values is larger

than the number of equations according to Eq.4.

Besides, note that nodes outside the cluster i do not com-

municate with node V (ij), there is no way to reveal the private

data of node V (ij) unless node V (ij) itself is cracked.

Therefore the proposed privacy preserving scheme can

achieve node-wise maximum privacy protection.

Corollary 3: The user can not deduce the private data of

any particular node.

Lemma 4: User-wise Maximum Privacy Protection The

final aggregation results and the fitted regression model cannot

be obtained by either data aggregation point or individual

nodes unless the attacker obtains all m keys between the

user and the m data aggregation points or cracks all m data

aggregation points.

Proof: The lemma holds trivially.

Corollary 4: The participatory nodes can not deduce the

aggregation results and the fitted regression model obtained

by the user.

VI. EVALUATION STUDY

A. Experiment Settings

Our experiment study is conducted based on MATLAB.

There are 4 data sets we have used in the evaluation study,

three of which are well-known data sets, where attitude [45]

concerns the attitude of the clerical employees of a large finan-

cial organization; auto [46] concerns city-cycle fuel consump-

tion in miles per gallon; salary [47] concerns discrimination
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in salaries for 52 tenure-track professors in a small college.

The other data set random is a self-generated data set with

6 variables in Matlab, {f1(x1),f2(x2), · · · ,f6(x6)}, where

each sample value of every variable is randomly selected in

the range of [0, 100] with a variation value randomly selected

from [0, 10], namely fi(xi) = xi+ε. We also set the response

variable b = f1(x1) + f2(x2) + f3(x3). Specifically, we

generate 180 sample tuples in the simulation.

In the settings, we randomly deploy N participatory sensing

nodes in an area of 100× 100 grids, where N depends on the

participatory nodes in the data sets. All the results are averaged

over 20 runs.

Due to the limited number of observations in the data set,

we set the number of clusters to 1 in the data sets attitude,

auto, and salary, and the number of clusters to 2 in the data set

random. The size of the training data of attitude, auto, salary,

and random is set to 31, 360, 43, and 120 respectively, and

the size of the test data of attitude, auto, salary, and random
is set to 10, 32, 9, and 60 respectively.

B. Accuracy Analysis

To evaluate our approach, we compare our approach with

the one proposed [3], and the best model given in SAS by

regular regression analysis of the original data.

To facilitate the comparison between our approach, the one

proposed [3], and the best model given in SAS by regular

regression analysis of the original data, we use M-PERM, [3],

and Regression to represent them, respectively.

Fig.3(a) and Fig.3(b) provide the comparison results of C

statistics and Adjusted Rs of the models given by M-PERM,

[3], and regular regression in SAS with the original data.

According to the results shown in Fig.3(a) and Fig.3(b), it

is obvious to observe that the model given by M-PERM is the

same as the best model given by regular regression analysis

in SAS with the original data. The C statistics of M-PERM

of the four data sets are all substantially better than the one

given by [3], and all its Adjusted R values are better than that

of [3]. Generally speaking, M-PERM is superior to [3], and

can achieve the same best model as if the original private data

were used by regular regression analysis in SAS.

Fig.4 shows the C statistics of different models checked by

M-PERM for each of the four data sets. Taking Fig.4(a) (the

data set of attitude) as an example, the model with 2 variables

selected by t-test (namely the 2 variables of most significance

to the response variable) reaches the smallest C statistic, which

indicates that this model should be the best model according to

C statistic. From Fig.4, we can see that M-PERM can always

find the best model according to C statistic.

Fig.5 shows the Adjusted R values of different models

checked by M-PERM for each of the four data sets. Taking

Fig.5(a) (the data set of attitude) as an example, the model

with 2 variables selected by t-test (namely the 2 variables of

most significance to the response variable) reaches the highest

Adjusted R value, which indicates that this model should be

the best model according to Adjusted R. Taking Fig.5(b) (the

data set of auto) as an example, started from 2 variables, the

models with 2 or more variables selected by t-test (namely

the 2 or more variables of most significance to the response

variable) begin to have similar peak-high Adjusted R values,

which indicates that these models with 2 or more variables

could be good models to fit the data according to Adjusted

R. However, the best model should be further determined by

other criterion. For example, C statistic in Fig.4 provides us

the exact best model.
Fig.6 shows the standard error of the models given by M-

PERM and [3] of 20 runs over the four data sets. In this figure,

we can see that M-PERM always achieves smaller standard

error than that of [3]. Fig.7 shows the reconstructed values of

M-PERM and [3]of the four data sets, compared with the real

value of the test data. In this figure, we can see that M-PERM

always better fits the data and generally performs better than

[3].
Generally speaking, we can see that M-PERM has the

capability to find the best regression model as if the original

private data were used by regular regression analysis in SAS.

It always substantially performs better than [3].
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Fig. 4. C statistics of different models for the four data sets.

C. Communication Overheads
In this section, we study the communication overhead of M-

PERM and compare it with [3]. Given the network of N nodes,
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Fig. 6. Prediction errors of M-PERM and [3] for the four data sets.

with m clusters and c nodes in each cluster, we have N = m×
c The communication overhead of [3] is O(N3/2(w2+w+1)).

For M-PERM, the communication overhead within

each cluster is O(c5/2), the communication overhead is

O(mN1/2(w2+3w+3)) Therefore, the overall communication

overhead of M-PERM is O(Nc3/2) +mN1/2(w2 + 3w + 3).
The communication overhead of M-PERM should be smaller

than that of [3] by setting a proper cluster size in the

network. In other words, when the cluster size is fixed, the

communication overhead of M-PERM increases slower than

that of [3].

Fig.8 shows the communication overhead of M-PERM and

[3] when the cluster size is fixed to 30. As shown in the figure,

as the number of nodes increases, the communication overhead

of [3] quickly goes beyond the communication overhead of

M-PERM. Namely M-PERM has a better performance of
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Fig. 7. Predicted values of M-PERM and [3] over the test data of the four
data sets compared with the real data values.

communication overhead than that of [3].

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105

the number of sensor nodes

C
om

m
un

ic
at

io
n 

O
ve

rh
ea

d

M−PERM:3 variable
M−PERM:4 variable
M−PERM:5 variable
M−PERM:6 variable
[3]:3 variable
[3]:4 variable
[3]:5 variable
[3]:6 variable

Schemes Communication
Overhead

Method O(N3/2·
in [3] (w2 + w + 1))

O(Nc3/2)

M-PERM +mN1/2

(w2 + 3w + 3)

Fig. 8. Communication Overhead

VII. CONCLUSION

In this paper, we have addressed mutual privacy preserv-

ing issues in participatory sensing and the challenges for

regression analysis in user-defined participatory data analysis.

Different from existing approaches, our approach has the

capability to find the best model as if the original private

data were used without requiring the knowledge of the exact

model expression or leaking any regression results. This is

a significant advance compared with the existing approaches

[1-5]. The analysis also indicates that our data gathering

design could reach maximum privacy protection under certain

conditions and be robust against collusion attack. Furthermore,

compared with existing works under the same context (e.g., [1-

3]), our work first time shows that not only model coefficients

estimation but also regression analysis and model fitting are

reachable for mutual privacy preserving participatory sensing.
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